用語集

このサイトで使われている用語の解説です。



ALL
Currently sorted First name ascending Sort by: Surname | First name change to descending

Page:  1  2  (Next)
  ALL

Picture of Studio RAIN

Studio RAIN

タイプⅠエラー

(Last edited: Saturday, 15 September 2012, 9:29 PM)

第一種の過誤」を参照。

タイプⅡエラー

(Last edited: Saturday, 15 September 2012, 9:31 PM)

第二種の過誤」を参照。

両側検定

(Last edited: Saturday, 15 September 2012, 9:40 PM)

特定の母数に関するパラメトリック検定において、帰無仮説より小さい側と大きい側の両側に棄却域をとる方法のこと。両側検定片側検定の使い分けも、本によっていろんな説明がされているが、純理論的には、第二種の過誤をできるだけ減らすという原則から素直に導ける。

仮説検定

(Last edited: Saturday, 15 September 2012, 8:06 PM)

検定」を参照。

対立仮説

(Last edited: Saturday, 15 September 2012, 9:24 PM)

検定の際に立てられる相反する二つの仮説の一つで、もう一つを帰無仮説という。帰無仮説と対立仮説の区別については、本によっていろいろな説明がされていて今一 つわかりにくい。帰無仮説は単純仮説で対立仮説は複合仮説だとか、帰無仮説は「関係がない」というタイプの仮説で対立仮説は「関係がある」というタイプの 仮説だとか。でも、実はこういったことは、検定が使われる状況とか技術的な制約とかによってたまたまそうなっているにすぎず、純理論的には本質的ではない。純理論的に本質的な差は、帰無仮説は棄却される確率(第一種の過誤の確率)を有意水準で厳しく制御されるのに対し、対立仮説はそうではないという点にある。

帰無仮説

(Last edited: Saturday, 15 September 2012, 9:23 PM)

検定の際に立てられる相反する二つの仮説の一つで、もう一つを対立仮説という。帰無仮説と対立仮説の区別については、本によっていろいろな説明がされていて今一つわかりにくい。帰無仮説は単純仮説で対立仮説は複合仮説だとか、帰無仮説は「関係がない」というタイプの仮説で対立仮説は「関係がある」というタイプの仮説だとか。でも、実はこういったことは、検定が使われる状況とか技術的な制約とかによってたまたまそうなっているにすぎず、純理論的には本質的ではない。純理論的に本質的な差は、帰無仮説は棄却される確率(第一種の過誤の確率)を有意水準で厳しく制御されるのに対し、対立仮説はそうではないという点にある。

有意水準

(Last edited: Sunday, 16 September 2012, 2:06 AM)

昔は危険率とも言ったが、最近はハザード関係とまぎらわしいのか、あまり使われなくなった。特定の検定において、帰無仮説が正しいにもかかわらず棄却される確率のことで、値としては第一種の過誤の確率と同じ。ただ、あらかじめ検定の目標として設定したり、検定結果を表現したりするときには、いちいち第一種の過誤の確率とは言わず、「有意水準 α % の検定」のように表現することが多い。

棄却域

(Last edited: Saturday, 15 September 2012, 10:30 PM)

検定対象の確率変数(検定統計量)のとりうる値(標本空間)の部分集合で、確率変数がその集合内の値をとったら、帰無仮説が棄却されることになっている範囲のこと。特定の値より大きいか小さいかで表現されることが多く、その値を棄却点という。

棄却点

(Last edited: Saturday, 15 September 2012, 10:39 PM)

棄却域の上限・下限を表すために使われる値。

検定

(Last edited: Saturday, 15 September 2012, 9:45 PM)

仮説検定もしくは統計的検定とも言う。母集団に関する仮説の真偽をサンプルから判定すること。母集団の確率分布がわかっていると見なして、母数だけを判定する場合をパラメトリック検定、確率分布もわかっていないと見なす場合をノンパラメトリック検定という。現代の検定は普通、ネイマンと(エゴン・)ピアソンの定式化した枠組みにしたがって行われる。それ以前のフィッシャーなどが考えた方式と区別する場合には、ネイマン=ピアソン流などと呼ぶこともある。


Page:  1  2  (Next)
  ALL